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Abstract— Regularity is an important aspect of physical
activity that can provide valuable insights into how individ-
uals engage in physical activity over time. Accurate mea-
surement of regularity not only advances our understand-
ing of physical activity behavior but also facilitates the
development of human activity modeling and forecasting.
Furthermore, it can inform the design and implementation
of tailored interventions to improve population health out-
comes. In this paper, we aim to assess the regularity of
physical activities through longitudinal sensor data, which
reflects individuals’ all physical activities over an extended
period. We present several entropy models, including en-
tropy rate, approximate entropy, and sample entropy, which
offer a more comprehensive evaluation of physical activity
regularity compared to metrics based solely on periodicity
or stability. We also propose a framework to validate the
performance of entropy models on both artificial and real-
world physical activity data. The results indicate entropy
rate is able to identify not only the magnitude and amount of
noise but also macroscopic variations of physical activities,
such as differences on duration and occurrence time. Si-
multaneously, entropy rate is highly correlated with the pre-
dictability of real-world samples, further highlighting its ap-
plicability in measuring human physical activity regularity.
Leveraging entropy rate, we investigate the regularity for
numerous individuals. We find the composition of physical
activities can partially explain the difference in regularity
among individuals, and the majority of individuals exhibit
temporal stability of regularity.

Index Terms— Physical activity, regularity, entropy rate,
approximate entropy, sample entropy

I. INTRODUCTION

PHYSICAL activity is defined as any voluntary bodily
movement produced by skeletal muscles that requires

energy expenditure [1]. Physical activity encompasses all
activities, at any intensity, performed during any time of day
or night. It includes both exercise and incidental activity
integrated into daily routines, such as walking to the local
shop, cleaning, working, active transport, etc [2]. Driven by
daily routine, some physical activities of humans over a
period of time are regular, for instance, commuting on time
during weekdays or exercising regularly. On the other hand,
influenced by the external environment and unexpected events,
the physical activities of humans often have the random nature
as well. To what extent are an individual’s physical activities
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regular? This is a fundamental question about human behavior
understanding. Our goal here is to measure the regularity
of human physical activities. The accurate measurement of
regularity can facilitate advancements in human activity mod-
eling and prediction, and further enable the implementation of
tailored interventions aimed at improving health outcomes.

Conventional methods [3], [4] measure the regularity of
human life by designing diary-like instruments to record the
occurrence of particular events. Such data collection requires
the subjects to record their activities of daily living manually.
Therefore it is expensive and subjective, and also constrained
to small sample sizes and short time spans. However, the
proliferation of smartphones and wearable devices provides
new opportunities to collect sensor data about human physical
activities on a large scale and over a long period of time. The
sensor data collected from smartphones and wearable devices
includes step counts, calorie expenditures, exercise intensities,
heartbeats, and so on. Such longitudinal sensor data sampled
at intervals of a few minutes can reflect an individual’s all
physical activities more accurately and informatively [5]. This
makes it possible to measure the regularity of human physical
activities in detail and reliably.

In the existing literature, some metrics have been proposed
to measure the regularity of human physical activity utilizing
longitudinal sensor data. Generally, these metrics can be
divided into two categories: periodicity-based metrics and
stability-based metrics. The former focus on measuring the 24-
hour periodicity of sensor data. These periodicity-based met-
rics calculate the similarity of data points at 24-hour intervals
as an indicator of regularity, and they disregard the orderliness
of successive data points. For the latter case, regularity is
denoted by stability. These metrics use the standard deviation
of the original sensor data or some features extracted from the
sensor data to determine regularity. Despite this, sensor data
with large variations can also be considered regular, such as
periodic signals. Both periodicity and stability are special types
of regularity. As these metrics presuppose types of regularity
in advance, they cannot provide a comprehensive measurement
of regularity for human physical activity.

Regularity refers to the extent to which individual activities
repeat over time in fixed patterns [6]. It not only depends
on the variability in the characteristics of a single type of
activity but also on the cycles or patterns existing in activ-
ity sequences. In information theory, entropy quantifies the
uncertainty of a random variable and it also measures the
degree of randomness in the system [7]. There are several
entropy models that can be used to determine the regularity
of serial data based on the presence of patterns. The entropy
rate measures how the entropy of a sequence changes over
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time, allowing the randomness of the sequence to be quantified
[8]. In practice, the entropy rate has been used extensively
to assess the regularity of categorical sequences, including
human mobility [6], [9], human economic behavior [10],
human online life [11], web browsing behavior [12] and
patient health records [13]. Additionally, Pincus et al. [14]
devised Approximate Entropy (ApEn) as the measurement
of regularity that can be applied to short and noisy time
series of continuous values. Richman et al. [15] developed
Sample Entropy (SampEn), which addresses the issues of
bias and lack of relative consistency in approximate entropy,
to measure the regularity of clinical and experimental time
series. While approximate entropy and sample entropy are
initially developed for physiological applications, both of them
have been used in other fields such as medicine [16]–[18],
economics [19], [20], climatology [21]–[23], gait analysis
[24], [25], and battery health prognostics [26], [27]. Despite
this, there is, to date, a paucity of research on the application
of these entropy models to human physical activity data. It
still remains unclear which entropy model is most suitable for
measuring the regularity of human physical activities.

In this paper, we aim to quantify the regularity of human
physical activities accurately and comprehensively from lon-
gitudinal sensor data. First, the entropy rate calculation proce-
dure is modified to allow it to be applied to physical activity
data with continuous values. Then, we compare the applicabil-
ity of entropy rate, approximate entropy, and sample entropy
as measurements of the regularity of physical activities. By
simulating real-life activity patterns with artificial data, we
validate the performance of entropy models under different
scenarios. Results indicate that entropy rate is superior to
approximate entropy and sample entropy. Entropy rate can
identify not only the magnitude and amount of randomness,
but also the macroscopic variations, such as the differences
on duration and occurrence time. We then further evaluate
the performance of the three entropy models by correlating
their respective entropy values with prediction errors obtained
from multiple forecast models, on real-world physical activity
data samples. We show that again entropy rate outperforms
the other two entropy models with a correlation coefficient as
high as 0.895. We then conclude that entropy rate is a reliable
measurement of human physical activity regularity.

Utilizing entropy rate as the measurement of human phys-
ical activity regularity, we investigate the interpersonal and
intrapersonal variation of regularity for 686 individuals. We
find that the regularity varies considerably across individuals
and the difference in activities composition can explain a large
part of the variation. Meanwhile, the majority of individuals
maintain stable physical activity habits and their regularity
does not change significantly over time. The contributions of
this study are summarized as follows:

1) We modify the calculation procedure of entropy rate so
that it can be applied to physical activity data.

2) We propose a framework to validate the performance
of entropy models on both artificial and real-world
physical activity data. Experiment results demonstrate
that entropy rate is more suitable than approximate
entropy and sample entropy for measuring the regularity

of human physical activities.
3) Our analysis of human physical activity regularity using

entropy rate reveals that variations in regularity among
individuals are primarily associated with the composi-
tion of activities. In addition, the regularity of most
individuals remains stable over time.

The rest of the paper is organized as follows. We first
present the related work on human behavior regularity in
section II. Then we describe the details on entropy rate, ap-
proximate entropy, and sample entropy in section III. Section
IV displays the validation of three entropy models. More
results about human physical activity regularity are shown in
section V. Finally, in section VI, we conclude our work and
discuss future research directions.

II. RELATED WORK

The concept of regularity is recognized as a fundamental
aspect in the field of human behavior understanding. Prior to
the widespread adoption of wearable technology, a significant
body of literature has utilized survey data to assess the
regularity in human daily activities. The Social Rhythm Metric
(SRM) [3], [4] is a widely used metric that quantifies the
regularity of an individual’s daily activities with respect to
their timing. The SRM is calculated by first having subjects
record the occurrence of various event categories, and then
determining the habit time of each event through an outlier
elimination algorithm. The average count of events that occur
within the habit time for each event category is then used to
reflect the subject’s level of daily lifestyle regularity. Despite
its widespread usage in studies exploring the relationship
between health outcomes and lifestyle regularity [28]–[30], the
SRM ignores the interconnections among successive events,
leading to an incomplete representation of regularity.

In recent years, mobile sensing has shown increasing po-
tential for tracking human daily activities of living. The
widespread use of smartphones and wearable devices has
enabled the collection of rich, longitudinal sensor data that
characterizes an individual’s activities, sleep patterns, and ap-
plication usage. These data provides a foundation for studying
the regularity of human daily activities and has resulted in
the proposal of several metrics. These metrics can be broadly
categorized into two groups: those that focus on quantifying
the periodicity in the sensor data and those that employ
stability to capture the essence of regularity.

Since human behaviors are driven by an internal biological
clock that regulates the sleep–wake cycle and repeats roughly
every 24 hours, the 24-hour periodicity is usually regarded as
a measurement of human life regularity. Saeb et al. [31] and
Wang et al. [32] proposed circadian rhythm to measure the
strength with which an individual follows a 24-hour rhythm in
behaviors. Sensor data was converted to the frequency domain,
and the circadian rhythm was determined by energy that falls
within the 24 ± 0.5 h. Phillips et al. [33] developed the
sleep regularity index (SRI), which calculates the percentage
probability of an individual being in the same state (asleep
vs. awake) at any two time-points 24 hours apart, as the
measurement of sleep regularity. A similar metric can be
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extended to sensor data other than sleep. In reference [32],
[34], regularity index (RI) and flexible regularity index (FRI)
were proposed to assess the difference between the same time
points across different days. The RI calculates the product of
rescaled values of the same time points from different days
to evaluate the difference, while the FRI uses edit distance. It
should be noted that these metrics only focus on the similarity
of data points at 24-hour intervals and do not take into account
the orderliness of successive data points.

Other metrics in the literature treat the stability as a proxy
for regularity. Standard deviations are commonly used to
measure the variance of daily activities. Marschollek et al. [35]
employed the standard deviation of all time differences be-
tween physical activity event starts as a measure of regularity.
Fischer et al. [36] applied the standard deviation to features of
daily sleep (e.g. sleep onset, sleep offset, midsleep, duration)
to quantify sleep regularity. Wang et al. [32] directly calculate
standard deviation of physical activity data as a metric for
human physical activity variability. Wil et al. [37] introduced
the concepts of inter-daily stability and intra-daily variability
to assess rest-activity rhythms. Inter-daily stability evaluates
the consistency of daily activity patterns with respect to the
average pattern across days, and it reflects the stability of rest-
activity rhythms over multiple days. Intra-daily variability is
calculated as the ratio of the mean squared the first deviation
of the data and the population variance of the data, which
detects fragmentation of rest-activity rhythms. In addition to
rest-activity rhythms, they can also be applied to measure
sleep regularity [36]. However, stability is only one aspect of
regularity, as periodic signals with large variations can still be
considered regular. Therefore, the use of stability alone may
not be sufficient to represent regularity.

It is evident that none of the metrics previously discussed
are capable of assessing the regularity of human daily activities
comprehensively. These metrics are limited in their scope, as
they make prior assumptions about the definition of regularity.
A comprehensive regularity measurement should consider all
possible patterns present in the sensor data. In the following
section, we introduce entropy-based metrics that circumvent
the limitations of the previously mentioned metrics, offering
a more inclusive measurement of regularity.

III. MEASUREMENT OF REGULARITY

The antithesis of regularity is randomness. The analysis of
the randomness of a series has its roots in information theory
and the concept of entropy. Entropy quantifies the amount
of information of random variables based on the probability
distributions. It can also measures the degree of randomness
in the system [8]. However, Shannon entropy has a limitation
in its inability to capture patterns present in sequential data,
as it disregards the temporal correlation among elements in
sequence. The real entropy of a sequence depends not only
on the frequency of elements in the sequence, but also on
the order in which the elements are combined. Entropy rate,
approximate entropy, and sample entropy are three kinds of
entropy that consider the ordered sub-sequence existed in the
sequence. And they are widely used to measure the regularity
of sequential data.

A. Entropy rate
Mathematically, a series from real-world can be modeled

as a stochastic process X , which is an indexed sequence of
random variables [X1, ..., Xn]. And there can be an arbitrary
dependence among the random variables. The joint entropy of
the collection of random variables is

H(X1, ..., Xn) = −
∑

x1∈Ω1

...
∑

xn∈Ωn

p(x1, ..., xn)log2p(x1, ..., xn).

(1)
The entropy rate of a stochastic process is the asymptotic

rate at which the entropy of a sequence grows with increasing
n. The entropy rate H(X) is defined as follows.

H(X) = lim
n→∞

1

n
H(X1, ..., Xn). (2)

As shown in equation (2), entropy rate is the average entropy
over all random variables and it means the average information
gain with the increment of the sequence. Reference [7] proves
that this limit of equation (2) exists for all stationary random
processes and is equal to

H(X) = lim
n→∞

H(Xn|X1, ..., Xn−1), (3)

where H(Xn|X1, ..., Xn−1) is the conditional entropy of the
last variable given the previous n − 1 values. Equation (3)
indicates that the entropy rate account for the dependencies
among random variables. The stronger dependencies among
variables in a stochastic process, the more information the
previous variables provide about the next one, and therefore
the lower the entropy rate of the process. In contrast, if all
variables of the process are independent, the entropy rate of
the process is exactly equivalent to the Shannon entropy of
the process, which is the upper bound for the entropy rate.

The estimation of entropy rate can be challenging since it
is difficult to know the joint probability distribution of finite
sequences in real-world data. Here, we introduce an estimation
algorithm based on Lempel-Ziv data compression [38], which
is known to rapidly converge to the real entropy rate of a time
series. For a time series with length n, the entropy rate is
estimated by

Hest =
n× log2(n)∑n

i=1 Λi
, (4)

where Λi is the length of the shortest substring starting at
position i which doesn’t previously appear from position 1 to
i−1. We illustrate the estimation procedure of entropy rate of a
discrete sequence X = (A,B,A,B,C) in Table I for a better
understanding. The notation X[1 : i] is historical subsequence
before position i. Si is the shortest subsequence that never
appeared in X[1 : i], and Λi is the length of the shortest
subsequence Si. For i = 1, 2, 5, Λi = 1, since the symbols in
these positions are new symbols. While, for i = 3, the shortest
new subsequence is ABC, because the historical subsequence
AB appears in position 3 again. A similar situation also occurs
in position 4. Above example tells us if there are some fixed
patterns that appear in the sequence repeatedly, their Λi will
be larger and the entropy rate will be smaller. In the extreme
case of a sequence whose symbols are all unique, Λi = 1 for
all symbols and

∑n
i=1 Λi = n. In this case, the entropy rate is
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TABLE I
AN EXAMPLE ILLUSTRATING THE ESTIMATION OF ENTROPY RATE.

i X[1 : i] Si Λi

1 ABABC A 1
2 ABABC B 1
3 ABABC ABC 3
4 ABABC BC 2
5 ABABC C 1

maximum, equal to the Shannon entropy of sequence, which
is log2(n). It also have been proven that Hest will converge
to the actual entropy rate when n approaches infinity [39].

B. Approximate entropy
Approximate entropy is a statistic quantifying the regularity

and complexity of short and noisy time series data [40].
It originated from the analysis of complexity in dynamic
systems and is seen as the information-theoretic rate of entropy
for approximating Markov chains [41]. Approximate entropy
measures the logarithmic probability that nearby pattern runs
remain close in the next incremental comparison. The calcu-
lation of approximate entropy requires two parameters, which
are m, the length of the template, and r, a noise filter.
Statistically, it would be the equivalent of dividing the space
of states into cells of width r, to estimate the conditional
probabilities of the m-th order.

Given a sequence of data X = [x1, x2, ..., xn] of length n,
form subsequences sm(1) through sm(n−m+1), defined by
sm(i) = [xi, xi+1, ..., xi+m−1]. The distance between sm(i)
and sm(j) is defined as the maximum difference in their
respective scalar components, which is

d[sm(i), sm(j)] = maxk=1,2,...,m(|xi+k−1 − xj+k−1|). (5)

We define a quantity named correlation integral,

Cm
i (r) =

1

n−m+ 1

n−m+1∑
j=1

#d[sm(i), sm(j)] ≤ r, (6)

which is the average number of subsequences similar to sm(i).
Then we compute,

Φm(r) =
1

n−m+ 1

n−m+1∑
i=1

log2(C
m
i (r)). (7)

Finally, the approximate entropy of the sequence is

ApEn(m, r) = Φm(r)− Φm+1(r)

≈ −(n−m)−1
n−m∑
i=1

log2(
Cm+1

i (r)

Cm
i (r)

).
(8)

From equation (8), we can see that approximate entropy is in-
versely proportional to the conditional probability that similar
subsequences of length m stay consistent at the next position.
Greater likelihood of remaining close, implying regularity,
produces smaller ApEn values, and conversely.

Pincus showed that approximate entropy would converge to
the entropy rate for independent identical distribution series
and finite Markov chains [14]. However, this does not hold in

more general cases, since approximate entropy is designed as
a relative measurement used to compare the regularity of dif-
ferent time series. Approximate entropy can vary significantly
with the choice of m and r, but the relativity of approximate
entropy is enough to discriminate different systems. Pincus
[42] pointed that, in general, given two data series X1 and
X2, when ApEn(m1, r1)(X1) < ApEn(m1, r1)(X2) then
ApEn(m2, r2)(X1) < ApEn(m2, r2)(X2). Additionally, the
selection of appropriate values for m and r is crucial in
ensuring accurate estimation of the conditional probability
from data series of length n. It is recommended that m has a
relatively low value, e.g., 2 or 3, since a reasonable estimation
of conditional probability needs preferably 30m points. The
value of r should fall within the range of 0.1σ−0.25σ, where
σ is the standard deviation of series.

C. Sample entropy

Approximate entropy is biased statistic. The bias arises from
the calculation of correlation integral Cm

i (r), which allows
each subsequence to count itself to ensure the logarithms
remain finite. As a consequence, the conditional probability
is overestimated. If we call Bi is the number of subsequences
with length m that are similar to subsequence sm(i), and Ai is
the number of subsequences with length m+1 that are similar
to subsequence sm+1(i). The approximate entropy calculate
(Ai +1)/(Bi +1) as conditional probability, which is greater
than the real one Ai/Bi. This bias is obviously more important
for series with a small number of points n.

Richman et al. [15] defined sample entropy, a statistic
which does not have self-counting and eliminates the bias of
approximate entropy. And the calculation procedure of sample
entropy is simpler than approximate entropy. We define:

A =

n−m∑
i=1

n−m∑
j=1,j ̸=i

#d[sm+1(i), sm+1(j)] ≤ r, (9)

B =

n−m∑
i=1

n−m∑
j=1,j ̸=i

#d[sm(i), sm(j)] ≤ r, (10)

where A is the counts that two subsequences are similar with
length m, and B is the counts that two subsequences are
similar with length m+1. By constraining j ̸= i, self-counting
is avoided. Then sample entropy is calculated as:

SampEn(m, r) = − log2(
A

B
) (11)

Since A is always less than or equal to B, the ratio A/B
is an unbiased conditional probability less than or equal to
unity. In addition to self-counting, another difference between
SampEn and ApEn is the position of logarithm. The sum
of all subsequences is inside the logarithm in SampEn
and outside in ApEn. This operation reduces the probability
of undefined logarithms when self-counting is not allowed.
Sample entropy demonstrates improved relative consistency
in comparison to approximate entropy and provides a more
effective means of quantifying regularity in a system [15].

In conclusion, entropy rate estimated by the data compres-
sion algorithm measures regularity of time series based on
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the length of new subsequences. While approximate entropy
and sample entropy rely on the conditional probability that
close patterns for m observations remain close on the next
incremental comparisons. All of them take into account the
evolution of the series over time. A regular evolution leads to
fixed patterns in the series, further resulting in an increment of
conditional probability and a shorter length of the compressed
series. In contrast, a random evolution leads to the opposite
outcome.

In practice, entropy rate is commonly used to measure
regularity of categorical time series, such as human mobility
[9], human economic behavior [10], human online life [11],
web browsing behavior [12] and patient health records [13].
Approximate entropy and sample entropy are used extensively
in physiological [42], medical [43], [44], economic [19], [20],
and climatic [21]–[23] applications, as well as in gait analysis
[24], [25], and battery health prognostics [26], [27]. However,
there has been a lack of studies that apply these entropy-based
metrics to assess the regularity of human physical activities. As
a result, the suitability of these entropy models in measuring
the regularity of human activities remains to be verified.

D. Adapting entropy rate to samples with continuous
values

To apply entropy rate to longitudinal sensor data that
can reflect an individual’s physical activities, we modify the
estimation procedure of entropy rate. As outlined in Equation
(4), calculating Λi is essential for estimating entropy rate. In
its original definition, Λi represents the length of the shortest
subsequence which starts from position i and never exists
previously. While this definition is appropriate for categorical
time series, it is too rigid for time series with continuous
values, such as step counts or calorie expenditures, where
small numerical differences can still be considered as equiv-
alent status. Therefore, we generalize the definition of Λi by
replacing existence with similarity. Based on distance function
d[sm(i), sm(j)] in equation (5), we consider two subsequences
are similar if d[sm(i), sm(j)] ≤ r. Λi is redefined as the
length of the shortest subsequence which starts from posi-
tion i and never exists similar subsequences previously. This
modification not only enables the entropy rate to be applied
to continuous series, but also makes the comparison among
entropy rate, approximate entropy, and sample entropy in a
more fair manner, due to the same parameter r.

IV. VALIDATION OF ENTROPY MODELS

In this part, we validate the applicability of entropy rate,
approximate entropy, and sample entropy for measuring the
regularity of human physical activities using longitudinal sen-
sor data.

A. Artificial physical activity data

To validate the applicability of entropy rate, approximate
entropy, and sample entropy, we need to know the real
regularity of longitudinal sensor data, or at least the relative
regularity among these data, as the ground truth. However, the

Fig. 1. Average step counts per minute within a week across users from
a real-world dataset.

diversity of individual lifestyles results in a mixture of varying
kinds of regularity and a multitude of random noises in real-
world sensor samples. This makes it challenging to manually
distinguish which samples exhibit a higher degree of regularity.

Despite the complexity of real-world data, it is possible to
construct artificial physical activity data with controllable ran-
domness to obtain a relative regularity. Moreover, the artificial
data should be considered as a simulation of activity patterns
that occur in real life. An analysis of a real-world dataset is
depicted in Figure 1, which reveals the average step counts per
minute within a week across hundreds of users. Similar shapes
from Monday to Friday indicate distinct circadian rhythms
existed in human physical activities. Three prominent peaks
can be identified in the morning, noon, and evening of week-
days, which indicates collective exercise preference. Based on
these observations, a basic activity pattern was constructed
for the artificial data, that is, exercise at preference time every
day. The inherent randomness in human life, however, affects
the occurrence time, duration, and intensity of exercise from
day to day. Additionally, trivial activities in daily life, such
as housework, may also occur randomly. By controlling the
degree of randomness in these elements, artificial physical
activity data can be generated with known relative regularity

More specifically, we model artificial physical activity data
as the superposition of two types of physical activities, which
are exercise and trivial activity. Exercise usually lasts for a
long period of time with a steady intensity, and is accompanied
by some preference in terms of timing. The trivial activity, by
contrast, only lasts a few minutes, fluctuates in intensity, and
occurs randomly throughout the day. Mathematically, artificial
data of one day can be expressed as

Y =

M∑
i=1

Ei(ti, di, inti) +

N∑
j=1

TAj , (12)

where Ei denotes i-th exercise of the day, and its parameters,
ti, di, and inti represent occurrence time, duration, and
intensity of the exercise, respectively. TAj is the j-th trivial
activity of the day. Trivial activities can be considered as
noise in daily life and are assumed to be independently and
identically distributed. A complete artificial sample consists of
data from several consecutive days. For simplicity, we assume
that data from different days are independent.
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Initially, we consider a completely regular scenario where
exercise of constant intensity and equal duration are performed
at the same time every day. Taking the minute-level step
counts data as an example, three exercises that occur every
day at 8:00, 12:00, and 20:00 with an intensity of 100
steps per minute and a duration of 60 minutes constitute
a very regular sample. In this case, M is set to 3, and
the parameters of exercise are also fixed on daily basis.
To simulate the variability of exercise, we add normally
distributed disturbances to the occurrence time, duration, and
intensity of exercise. These disturbances are denoted as dist ∼
N(0, σt), disd ∼ N(0, σd), disint ∼ N(0, σint), respectively.
The standard deviation determines the degree of disturbance.
A smaller standard deviation results in a more regular exercise
pattern, while a larger standard deviation increases the level of
disruption to the regularity. For trivial activities, their duration
are generated from a geometric distribution with a mean of
3 minutes, and they are randomly placed throughout the day.
The step counts per minute in trivial activities are sampled
from a uniform distribution range from 20 to 150. Due to the
random nature of trivial activity, an increase in the number
of trivial activities leads to a decline in regularity. Therefore,
the number of trivial activities, N , can be also used to control
the degree of disturbance, like standard deviations. In Fig.2,
we visualize four artificial samples, and each sample contains
only one specific disturbance. The title of subplot indicates the
type and degree of the disturbance. The x-axis is the time of
day, and each line in the subgraph is the step counts waveform
of a day. The y-axis is the number of days.

Using different parameters, we construct two-week artificial
samples under these disturbances. The standard deviation of
occurrence time ranges from 0 to 180 minutes in 30-minute
increments and the standard deviation of duration ranges
from 0 to 60 minutes in 10-minute increments. The standard
deviation for intensity, measured in terms of step counts per
minute, is varied from 0 to 100 in increments of 10. The
disturbances from normal distributions are limited to ±σ to
avoid cases of overlapping of exercise or meaningless values
such as negative duration or step counts. The number of trivial
activities per day ranges from 0 to 50. For each parameter
of disturbances, we construct 100 samples. Fig.3 shows the
entropy rate, approximate entropy, and sample entropy of
artificial samples with different parameters. The noise filter
r equals 10 to distinguish the smallest disturbance and the
length of template m is 2, as [42] suggested. The solid lines
represent trends of average value, and the shaded parts are
95% confidence intervals.

From Fig.3a and Fig.3b, we can find that approximate
entropy and sample entropy remain unchanged with different
disturbances on exercise’s occurrence time and duration. Al-
though the duration and occurrence time of exercise varies, the
conditional probability that similar subsequences of length m
stay consistent at the next position is almost invariable. This
stability is a result of the reliance of approximate entropy and
sample entropy on the evolution of small-scale subsequences.
Variations in the duration and occurrence time of exercise
can be considered as alterations in macro regularity, and they
are difficult to distinguish at a small-scale. In the analysis

Fig. 2. Visualization of artificial physical activity samples with four types
of disturbance.

of approximate entropy and sample entropy, the length of
template m determines the size of subsequences. Due to the
small value of m, approximate entropy and sample entropy are
less sensitive to such macro irregularities. While the entropy
rate increases with the degree of disturbance. The entropy rate
increases greatly from zero disturbance to a small disturbance,
then the increment of entropy rate becomes smaller with the
increment of disturbance. We can understand this phenomenon
from the perspective of lossless data compression. For the
completely regular sample, all activities are exactly the same
and can be compressed as one symbol. However, a small dis-
turbance leads to minor variations among activities, resulting
in the need to compress each unique activity as a separate sym-
bol. As the disturbance level increases, the number of identical
activities decreases and all activities must be compressed as
distinct symbols, leading to a gradual decrease in the growth
rate of entropy rate. Fig.3c shows the performance of three
entropy models on artificial samples under different degree
of disturbance on exercise’s intensity. The disturbance can be
regarded as noise of varying magnitudes applied to the original
signal. It is observed that the approximate entropy increases as
the magnitude of the noise increases. The larger the noise, the
wider range of values at each time points. And the probability
that similar subsequences are still close at the next moment
becomes smaller. Entropy rate is also increasing and leveling
off faster. This trend is similar to Fig.3a and Fig.3b for the
same reason. We zoom in on the sample entropy curve in
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Fig. 3. Entropy rate, approximate entropy, and sample entropy of
artificial samples under different degree of disturbance.

Fig.3c, which increases and then decreases as disturbance
increases. This is because sample entropy sums over the
numerator and denominator of all subsequences separately
when calculating the conditional probability. As shown in
Fig.3d, all three entropy models increase with the increment
of trivial activities, which means all of them are able to
distinguish the amount of noise in physical activity data.

Summarizing the performance of three kinds of entropy
on artificial physical activity data, we can find that approx-
imate entropy and sample entropy can not distinguish the
macroscopic variation of physical activity, such as duration
and occurrence time, as the entropy rate can. Additionally,
approximate entropy and entropy rate are able to identify the
magnitude and amount of noise in physical activity data, while
sample entropy can only identify the amount of noise.

B. Real-world physical activity data

The artificial physical activity data can be used to validate
the applicability of entropy rate, approximate entropy, and
sample entropy under specific situations. However, it is not
sufficient to evaluate the applicability of these three kinds
of entropy based only on the results of artificial data, given
that the real situation is more complex than artificial data.
A demonstration of how well these three types of entropy
perform on real-world physical activity data will be more
convincing. Although it is hard to know the real regularity
of real-world samples, predictability can serve as a proxy for

regularity since regular data is more predictable.
Predictability is a measure of how well future values of a

time series can be forecasted [45]. To evaluate the predictabil-
ity of a time series with length n, a forecasting approach
is employed starting at an initial position i. The i-th data
point is predicted based on the previous data points, and
this procedure is repeated until i = n. The predictability
of the time series is determined by the average error of the
predictions made at each position. It is important to note that
the predictability of a time series is not only dependent on
the degree of regularity present in the series, but also on the
choice of forecasting models. To mitigate the effect of model
choice on predictability, we employ four widely used time
series forecasting models, including both classical statistical
models and deep learning models, as follows.

1) Exponential smoothing (ES). Forecasts produced using
ES are weighted averages of past observations, with the
weights decaying exponentially as the observations get
older [46]. ES method can capture the trend and season-
ality of time series by applying exponential smoothing
recursively [47].

2) Prophet. Prophet forecasts time series based on an ad-
ditive model where non-linear trends are fit with yearly,
weekly, and daily seasonality, plus holiday effects [48].

3) Recurrent neural networks (RNN). RNN is a class of
neural networks allowing output from nodes affects sub-
sequent input, which is able to capture long-term tem-
poral dependencies. Long Short-Term Memory (LSTM)
[49] and Gated Recurrent Unit (GRU) [50] are two
popular variants of RNN, which have been shown to
achieve state-of-the-art results in applications with time
series.

4) N-BEATS. N-BEATS is a deep neural architecture based
on backward and forward residual links and a very
deep stack of fully-connected layers [51]. The residual
connection enables the stacks to focus on predicting
errors from the previous stack, which implements an
automatic time series decomposition.

We first validate the performance of these forecasting mod-
els in artificial physical activity data. To reduce computational
overhead, the data is first reduced from minute-level to hour-
level by summing the values per minute within one hour. In
this way, the total length of 30-day artificial samples is reduced
to 720. We historically forecast the entire sample starting from
the first 1/3 time steps, so that the forecast horizon is long
enough and sufficient historical data is available for the initial
forecast. The mean absolute error (MAE) is used as a metric
to evaluate the forecasting performance of the models. Since
the impact of disturbance on intensity will cancel out after the
summation process, we validate the performance of forecasting
models in hourly artificial samples with the presence of other
three kinds of disturbances. The results, as shown in Fig.
4, demonstrate that the MAE of the models increases with
the increase of the disturbance level. The trend of prediction
error is consistent with our expectation of regularity, and
this indicates that the prediction error can serve as a reliable
proxy for regularity. The correlation coefficient between the
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Fig. 4. Performance of forecast models on hourly artificial physical
activity data.

TABLE II
MAE OF FORECASTING MODELS ON REAL-WORLD DATASETS.

Models SJTU
(step counts)

Fitbit
(step counts)

Fitbit
(calorie)

Fitbit
(intensity)

ES 428± 148 298± 137 24.4± 12.6 9.61± 3.82
Prophet 466± 160 323± 146 28.1± 13.1 10.87± 3.89

RNN 346± 124 266± 134 23.1± 11.9 9.05± 3.69
N-BEATS 353± 123 294± 144 24.8± 12.2 9.52± 3.62

regularity measurements and the prediction error can then be
used to evaluate the performance of these metrics on real-
world physical activity data.

We then present two real-world physical activity datasets.
(1) SJTU dataset 1. This dataset contains minute-level step
counts data of 686 users over 30 consecutive days, collected
through a smartphone application called SJTU Health with
the consent of users. (2) Fitbit dataset 2. This dataset is
generated from thirty eligible Fitbit users who consented to
submit approximately one month of personal tracker data,
including minute-level step counts, calorie expenditures, and
exercise intensities. The values of intensity range from 0 to
3, representing sedentary, lightly active, moderately active,
and very active respectively. The intensity classification is
determined by proprietary algorithms from Fitbit.

We historically forecast these real-world samples from
different users after scaling them to hourly data, just as we
forecast artificial samples. The results, as presented in Table
II, demonstrate the mean and standard deviation of the MAE
of each forecasting model on real-world datasets. Among all
models, RNN exhibits the lowest average prediction error on
all datasets. The second-best performance is achieved by the
N-BESTS. These deep learning-based models perform better
than traditional models, like ES and Prophet.

Before calculating entropy rate, approximate entropy, and
sample entropy for these real-world samples, the noise filter
r needs to be assigned. The value of r should be chosen
carefully, as a small r can result in a high sensitivity to noise,
leading to the masking of real regularities by tiny fluctuations.
On the other hand, if r is set too large, it will reduce the ability
to distinguish noise and result in all entropy values being the
same in an extreme scenario where r approaches infinity. Here,
we assign r equal to the standard deviation of all data points
in the dataset, considering standard deviation can reflect the
amount of dispersion of data. In Table III, we list the mean and

1Data is available under reasonable requests.
2https://www.kaggle.com/datasets/arashnic/fitbit

TABLE III
MEAN AND STANDARD DEVIATION OF ALL DATA POINTS IN REAL-WORLD

DATASETS.

Datasets SJTU
(step counts)

Fitbit
(step counts)

Fitbit
(calorie)

Fitbit
(intensity)

Mean 402 320 98 12
Std 895 690 62 21

Fig. 5. Scatter plot of MAE and entropy on SJTU dataset.

standard deviation in SJTU and Fitbit datasets after scaling.
For approximate entropy and sample entropy, the length of
template m is 2, as [42] suggested.

After obtaining prediction errors and three kinds of en-
tropy for all real-world samples, we calculate the Spearman
correlation coefficient between prediction error and entropy
to determine the best regularity measurement. The Spearman
correlation coefficient is a statistical measure of the strength
of a monotonic relationship between paired data. Since regular
data can be predicted better, samples with smaller prediction
errors should have smaller entropy. Among three kinds of
entropy, the entropy with the highest Spearman correlation
coefficient is considered as the best regularity measurement.

In Fig.5, we display the scatter plots of prediction error
versus three kinds of entropy for four forecasting models in
the SJTU dataset. Each subplot is titled with the Spearman
correlation coefficient between prediction error and entropy.
The results show that for all forecasting models, the correlation
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Fig. 6. Correlation coefficients between prediction error and entropy on
Fitbit dataset.

Fig. 7. Average correlation coefficient between prediction errors and
entropy under varying noise filters in the SJTU dataset.

between entropy rate and prediction error is stronger compared
to that of approximate entropy and sample entropy. For all
kinds of entropy, the correlation coefficient between prediction
error of the best-performing RNN model and entropy is greater
than other models. The correlation coefficient between entropy
rate and error of RNN is the highest, which is 0.8951.
Fig.6 presents correlation coefficients between entropy and
prediction error on the Fitbit dataset. It is observed that the
correlation coefficients between sample entropy and prediction
error are notably lower than those between entropy rate and
approximate entropy. The performance of approximate entropy
is found to be comparable to that of entropy rate. And the
majority of their correlation coefficients are above 0.9.

We also perform a sensitivity analysis to investigate the
impact of different noise filters r on the performance of
three entropy models. Fig.7 presents the mean of correlation
coefficients between prediction errors from different models
and entropy under varying r in the SJTU dataset. The results
reveal that the average correlation coefficients of all three en-
tropy types initially increase and then decrease as r increases.
This phenomenon is consistent with our previous analysis
that entropy value calculated from both too small and too
large r can not reflect the real regularity. Additionally, entropy
rate displays a higher correlation coefficient than approximate
entropy and sample entropy across a wide range of parameters.
Especially when r is small, the advantage of entropy rate is
more obvious. Moreover, with the increase of r, the correlation
coefficient of entropy rate does not decline significantly. These
indicate that the entropy rate is more robust to the choice of
parameter r.

In conclusion, entropy rate is more relevant to the prediction
error of real-world physical activity samples than approximate

Fig. 8. Distribution of entropy rate across users in the SJTU dataset.

entropy and sample entropy. Combining their performance on
artificial data, entropy rate is more suitable than approximate
entropy and sample entropy to measure the regularity of human
physical activity.

V. HUMAN PHYSICAL ACTIVITY REGULARITY

A. Interpersonal variation of physical activity regularity

Based on entropy rate, we quantify the regularity of physical
activity for different individuals. As shown in Fig.8, we present
the distribution of entropy rate of minute-level data for all
users in the SJTU dataset. The average entropy rate of all users
is 0.066 bits. In this context, entropy rate refers to the average
amount of newly generated information for each update of
the user’s physical activity state. A entropy rate of 0.066 bit
can be interpreted as the user’s physical activity state of next
minute could be found on average in any of 20.066 ≈ 1.046
states, which also means the user’s physical activity state is
determinable most of the time. These results are reasonable
given that sedentary and restful activities typically occupy a
significant portion of the day for most individuals. The SJTU
dataset reveals that users on average have 1280 minutes per
day with 0 step counts. Additionally, the ordered structure
of the data, such as prolonged periods of a single state or
regular alternations between states, further reduces the number
of potential states for the next moment. Fig.8 also indicates
distinct variations exist among individuals’ regularity. Such
interpersonal variability on regularity reflects different lifestyle
preferences of people.

Fig.9 visualizes step counts data for two specific users
with different entropy rates over the month-long observation
period. User 1 displays a clear exercise pattern, characterized
by consistent daily walks at set times in the morning, noon,
and evening. Conversely, the data for user 2 exhibits a more
unpredictable and chaotic pattern, with various fluctuating
activities that occur at irregular times. As a result, the entropy
rate for user 2 (0.1015 bit) is significantly higher than that for
user 1 (0.0411 bit).

We also explore factors that may contribute to variations
in regularity among individuals. To this end, we derive two
features from the original physical activity data for all users.
The first feature is the daily step counts, which serves as a
measure of the total amount of physical activity. The second
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Fig. 9. Case study of two specific users with different entropy rate over
the 30 days

Fig. 10. Scatter plot of regularity and characteristics of physical
activities across all users in SJTU dataset.

feature is the daily duration of trivial activities, which can
be used as a proxy for the composition of physical activity.
The trivial activity is determined based on duration and
intensity. Physical activities that last less than 10 minutes
or 1000 step counts are classified as trivial activity, because
activities with more than 1000 step counts in 10 minutes are
generally regarded as effective exercise [52]. Fig.10 displays
the relationship between entropy rate and these two features
for all users in SJTU dataset. When daily step counts is low,
the entropy rate tends to be low as well, as there is limited
physical activity. However, as the daily step count increases,
the entropy rate exhibits a wider range of regularity. In general,
daily step counts is weakly correlated with entropy rate, and
the correlation coefficient is 0.4403. On the other hand, the
average duration spent on trivial activities per day shows a
great positive correlation with entropy rate, and the corre-
lation coefficient is 0.7290. Trivial activities tend to exhibit
more randomness in both the occurrence time and intensity
compared to exercise, which leads to a decrease in regularity

Fig. 11. Illustration of entropy rate sequences from three users. The
dotted line represents the mean value of sequence.

as the time spent on trivial activities increases. Overall, the
results suggest that the regularity of human physical activity
is not determined by the amount of activity, but rather by the
composition of activities.

B. Intrapersonal variation of physical activity regularity
Intrapersonal variation of regularity describes temporal vari-

ability of the same individual’s physical activity habits. For
each user in SJTU dataset, we recursively slide through the
entire sequence in a 14-day window (e.g. day1-day14, day2-
day15, ..., day17-day30). In this way, we divide user’s original
time series of 30 days into 17 two-week time periods. The
entropy rate of consecutive time periods forms an entropy
rate sequence, which indicates how an individual’s regularity
changes over time. Fig.11 illustrates entropy rate sequences
from three users with different degrees of variability. We
utilize Coefficient of Variation (CV) to quantify the degree
of variation, which is the ratio of the standard deviation to the
mean. The entropy rate sequence of user 1 has the smallest
CV value, 0.04, among these three users, and it fluctuates
around the blue dashed line, which is the mean of entropy
rate sequence. This indicates the physical activity regularity
of user1 is almost constant. The entropy rate sequence of user
2 decreases slightly in the last several time periods, and it
has a CV value of 0.10. For user 3, the entropy rate increases
significantly over time in the second half. Therefore, it has the
highest CV value of 0.20.

We also calculated the coefficient of variation o entropy
rate sequence for all users, and plot its cumulative distribution
function (CDF) in Fig.12. We can find that about 40% of users
have CV values less than 0.05, and more than 80% of the users
have CV values less than 0.1. This indicates the majority of
people have stable physical activity habits.

VI. CONCLUSION

Measuring regularity of physical activity is important for un-
derstanding an individual’s overall physical activity behavior
and for developing effective interventions to promote physical
activity and improve health. In this study, we prove that
entropy rate can be regarded as an appropriate measurement
for regularity of human physical activities. On artificial phys-
ical activity data with controllable randomness, entropy rate
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Fig. 12. Cumulative distribution function of the coefficient of variation
for all users in the SJTU dataset.

exhibits the ability to identify not only the magnitude and
amount of noise but also macroscopic variations of physical
activities, such as duration and occurrence time. On real-
world physical activity datasets, entropy rate is closely tied to
the predictability of samples. The strong correlations between
entropy rate and prediction errors from various forecasting
models demonstrate its applicability in measuring human
physical activity regularity.

As an accurate measure of regularity, entropy rate can
provide us with a better understanding of patterns of phys-
ical activities on individual and population-level. Based on
entropy rate, we investigate the interpersonal and intrapersonal
variations of regularity for numerous users. The results show
that the interpersonal variability in the regularity of physical
activity engagement is readily apparent in the population.
We further find that the heterogeneity in regularity among
individuals is attributable to the composition of physical
activities than the amount of physical activities. Individuals
who spent more time on trivial activities usually tend to
exhibit greater irregularity. Simultaneously, the regularity of
physical activities displays negligible intrapersonal variation
for the majority of individuals. The temporal stability of
regularity suggests the prevalence of stable physical activity
habits among the populace. In addition to the aforementioned
investigations, regularity measured by entropy rate can also
be advantageous in identifying subgroups necessitating inter-
vention to foster habitual physical activity. Better targeting
of interventions then can be implemented to improve health
of subgroups. Furthermore, regularity can function as crucial
prior knowledge in individual-level physical activity modeling
and prediction.

One limitation of this study, however, is that the data
recorded by wearable or other smart devices have their in-
herent limits. Some activities may fail to be recorded when
the device is not carried along by its owner. If that happens,
the regularity of the user behavior may appear to be different
than it really is. In this sense, it might be wise to treat the
non-zero data points differently from zero ones, such that
”real” activities may be prioritized in the analysis. It would
also be of interest to develop a multifaceted approach to
assessing the regularity of human activities, leveraging diverse
data sources such as activity data, weather data, and exter-

nal incentives. Such an integrated approach could provide a
more comprehensive and nuanced understanding of the factors
shaping physical activity patterns and inform the development
of targeted interventions to promote regular physical activity
engagement.
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