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Abstract—The step data of exercise(SDE) is a type of daily
life data that is generated by humans and recorded by mobile
devices. Collection of such data has become more and more
popular, as it provides users with information regarding his/her
level of activity, and a stimulus for persisting in an active
lifestyle. When SDE becomes more widely available, it also
provides health professionals with a new tool to interact with
their clients. Most existing methods for classifying exercise
modes rely on training models that are manually labeled, or
micro-pattern analysis using manually selected lengths and
micro-pattern quantities. However, SDE datasets are highly
personalized, inaccurate and the cost of these methods is high.
So we propose a new method to classify the SDE by utilizing
its inherent characteristics. With the understanding that SDE
reflects daily lifestyle, is personalized and stable over at least
a period of time, this paper takes the understanding of users’
exercise preference, obtained from dataset of respective users,
as prior knowledge. Then, instead of using raw step data,
we quantize the raw data into different levels of exercise and
takes into account the moment of exercise occurrence. Results
show that our method provides an easy to interpret and robust
characterization of user’s exercise habit.

Keywords-SDE, smart device, classification, prior knowledge,
exercise habit

I. INTRODUCTION

The wave of exercise has spread across the whole nation.
More and more scientific evidence indicates the positive
impacts of exercise on health. People associate exercise
with health and pay more and more attention to their own
level of exercise [1]. Recording one’s daily activity with
smart devices provides users with the information of long
term activity level and a stimulus for persisting in an active
lifestyle. This leads to the proliferation of activity tracking
software and devices [2] [3]. These software and tools record
exercise data, such as daily steps, cadence, and types of
exercise, which is called step data of exercise(SDE). The
wide availability of SDE also provides a tool for health
professionals to interact with their customer in a new way[4-
7].

Proper ways to understand the SDE is critical for any
application of the data. The difficulty lies in the fact that
the data may not be consistent in different software or
devices. Researches indicate that step counts collected by
different platforms may possess a discrepancy of 20% or

even more. This means that handling the step records as
precise numerical data points may lead to over-stated and
unrobust user behavior characterization. To obtain reliable
and robust results, inaccuracy should be taken into account
and the data should be treated as a rough characterization
of user’s lifestyle.

Given the fact that the exercise behavior, as an im-
portant component in one’s lifestyle, is typically stable
over time, data generated alongside such behavior should
also be stable. The application of such characteristic will
greatly facilitate the handling of SDE toward an accurate
and reliable description of one’s exercise behavior. In this
paper, we extract the ‘stable part’ of one’s exercise behavior
from the statistical distribution of his/her SDE dataset, and
use that as prior knowledge to understand the individual
samples in the dataset. With the knowledge, we divide the
individual SDE samples into segments. The time of exercise,
as well as the total exercise duration, is then calculated for
each time segment. A distance function based on time and
duration is used to classify the samples. Comparing with
existing solutions that often treats SDE datasets as generic
time series and use standard methods to do classification,
the proposed method in this paper has low computational
complexity, is robust over the variability in step quantity,
and, most importantly, delivers easy to interpret results. The
contributions of this paper include the following:

• We analyzed a large SDE dataset and obtained the
characteristics of SDE. We then argue that three quan-
tities related to exercise, instead of the raw step counts,
should be used in classifying the SDE samples.

• We propose a new distance function for the SDE. This
distance function captures the main features of the
exercise and reduces the impact of noise introduced by
high-dimensional data. It is simple and efficient.

• We propose a personalized segmentation of SDE sam-
ples based on prior knowledge. To the best of our
knowledge, we are the first to use this method in the
study of exercise data.

• Our approach shows much higher accuracy than the
baseline clustering algorithm on the SDE dataset. The
results show that our algorithm can capture the exercise



modes with different exercise habits.

II. RELATED WORK

Although there are few studies on SDE, we can get
inspiration from the analysis of other activity data. Activity
analysis studies follow three general directions. The first
approach constructs a model of some preselected activities,
and establishes the fitness of this model through methods
such as Bayesian Learning [9] and Hidden Markov Models
[10]. The obtained models can serve to predict people’s
house activities, to group the users based on their activity
routines, or to identify common activity routines [9]. Model-
based methods are commonly applied to datasets of location
and exercise sensors. To obtain sound results in their mod-
els, researchers study incorporate domain expert knowledge
(and perhaps manually annotate the dataset). This requires
substantial effort and constrains the quality of the analysis
to the extent of the expert’s knowledge ahead of the quality
of the dataset. On a highly personalized SDE dataset, the
implementation of an annotated dataset requires a high level
of expert knowledge and significant cost, which is difficult
to achieve.

As an alternative, studies from the second approach ex-
tract features from frequently occurring patterns, and then
construct classifiers based on these features. Subsequently,
for classification, studies either apply state-of-the-art super-
vised learning techniques such as Support Vector Machines,
Decision Trees [11] or incorporate custom data structures
(like graph-based clustering [12], and routine-tree [13].

The third method breaks the conventional thinking and
combine pattern recognition with other research areas. The
original time series is matrix-decomposed to form two
matrices, and clustered separately. The clustering results of
the two matrices are cross-fused to obtain the final cluster
[14]. Although a new clustering method is proposed, the
characteristics of the exercise time series itself are not taken
into account, and the dynamic time warping distance (DTW)
[15] is still selected for clustering.

These methods can be well applied in daily life data, but
when applied to SDE, the accuracy is going to be severely
affected by inaccuracy and variability of step count data.
Existing researches indicate that step counts collected by
different platforms may possess a discrepancy of 20% or
more. This means that handling the step records as precise
numerical data points may lead to over-stated and unrobust
user behavior characterization.

Therefore, we need to study and analyze the SDE itself in
order to design a robust classification method on the basis
of understanding the characteristics of SDE.

III. A FIRST LOOK AT SDE SAMPLES

The exercise data analyzed in this paper are a kind of step
data recorded by wearable devices or smartphones, which
reflect the exercise habits of people. Fig. 1 shows two SDE

Figure 1. Sample:Two time series of SDE.

samples of a particular user. In the figure, the x-axis is time
of the day whose unit is five minutes, and the y-axis is steps.
The blue and orange polylines represent two different time
series consisting of steps. These values are influenced by
sensors of smart devices, which may not accurately reflect
the actual number of steps. The steps recorded by different
devices may also have deviations. We do not know whether
these two time series are recorded by the same device. The
value of each point in the time series seems to be a number
that is completely randomly distributed between 0 and an
upper threshold. From these random numbers, we can’t seem
to find any regularity.

However, from the two samples, we can see that: 1. Both
samples indicate long lasting exercise during the day; 2.
The position of the exercise occurs, although there are some
offsets on the time axis, are not far apart. 3. The duration
of the corresponding exercise is similar.

Our statistical analysis on a large SDE dataset reveals the
fact that, even though the step counts in the samples may
vary dramatically against time and on different platforms, the
duration and time of exercise from different samples can be
very reliable. This suggests that instead of using raw step
counts as the input to the classification method, we should
use the duration and time of exercise, which can be derived
from the raw data, to handle SDE samples. Our analysis also
suggests that the number of exercise, which can range from
0 to 4 for most people, is also reliable over time. In short,
one’s daily exercise behavior can be better characterized by:
1. number of exercise, 2. occurrence time of exercise, 3.
duration of exercise.

At present, most of the researches on SDE time series
do not consider the characteristics of exercise itself. They
directly input steps into the algorithm, using Euclidean Dis-
tance or Dynamic Time Wrapping Distance to calculate the
distance between the series, trying to discover the exercise
modes. However, sensors from different smart devices affect
the number of steps and in addition, the step number itself
is also very volatile. For example, the number of steps
generated in two 20-minute exercise may differ by more



than a thousand steps, but should be recognized as the same
exercise practice. When a point-to-point Euclidean Distance
is used to calculate the distance between two time series, the
distance between two similar exercise will be large, even
if they only differ by half an hour. Using the Euclidean
Distance will result in the algorithm not being able to
distinguish between more similar series and completely
dissimilar series. A further study of the recognition of exer-
cise modes uses Dynamic Time Warping Distances(DTW)
[14] to measure the similarity between series. DTW was
first used in the field of speech recognition. This distance
algorithm can well describe the similarity of shapes and
has a certain degree of tolerance for the expansion and
translation of time series in shape. In contrast to Euclidean
Distance, DTW considers local misalignments and reports
the optimal warping path between the given two series. The
DTW Distance between the time series data Q and P can be
calculated as:

DTW (Q,P ) = min
W

(
K∑

k=1

d (wk)

)
(1)

However, due to the characteristics of the DTW itself,
when the distance between SDE is calculated using the
DTW Distance, the duration of the exercise is lost. DTW
focuses on ’similarity’, and in speech recognition, similar
waveforms represent the same character. The difference
between ’similarity’ and ’congruence’ is that ’similarity’
ignores the actual length and only calculates the degree of
conformity after scaling. If the DTW Distance is adopted,
the distance between the two time series, which generated
by exercising one hour and exercising ten minutes, may be
0. That is, the characteristics of the distance algorithm itself
cause the length of the exercise time to be ignored. The
DTW algorithm also does not describe the distance between
exercise time series very well.

Therefore, we hope to design a new method for calcu-
lating the distance between SDE time series according to
the essential characteristics of the exercise itself, and then
further distinguish the user’s exercise modes.

IV. METHODS

One exercise activity can be naturally characterized by
its duration and time of occurrence. Therefore, instead of
using raw step counts, we derive the two values from the
raw data, and use the two values, together with the number
of exercise, as the input for classification. In this section, we
introduce the detailed steps of our method.

The overall flow chart is shown in Fig. 2. The main steps
taken by our approach are as follows:
• Design a filter to remove the random noise and irregular

activities of raw data. The filtered data can reflect the
duration and the time of exercise. We name it time
series of exercise.

• Superimpose the time series of exercise over the past
hundreds of days for a given user and obtain a proba-
bility distribution of exercise throughout a day.

• Consider the probability distribution of exercise as prior
knowledge and dividing series of exercise activity into
segments. Then the duration of exercise is extracted as a
feature for each segment. So the time series of exercise
can be convert to feature vector consisting of feature
points. The feature vector will be used to measure the
similarity between SDE series.

• Based on the prior knowledge, quantify the duration of
exericse in each segment into three levels. Traversing all
combination of these levels, we initialize all classifiers
and each classifier represents one exercise mode.

• Euclidean Distance calculated between samples and
classifiers will become the basis of classification. The
classification is completed after abnormal series and
empty classes are removed.

SDE Data

Prior knowledge

Divide SDE time
series

Centroid matrix

Remove
abnormal series

Final
Cluster

Extracting the duration
of exercise

Feature vector

Initial
classification

Abnormal
threshold

Noise reduction filter

Figure 2. The data flow in our approach.

A. Processing of raw data

Step count data collected with smart phone and other
wearable devices reflect users’ daily activities. Aside with
habitual movement such as commuting to/from work and
planned exercise, random and irregular activities will also



be reflected in the data. When we try to characterize the
user’s exercise habit, it is important that data generated by
random and irregular activities are effectively removed.

To realize this, we designed a noise reduction filter, as
shown in the following algorithm table. In the filter, only
activities that has duration (in time) and intensity (in step
counts) greater than some threshold value are deemed as
valid exercise events. At the same time, we propose to
use the duration of exercise instead of the original steps
to analyze the exercise modes. In the same situation, the
difference in the number of exercise steps is far greater than
the exercise time, so using duration (in time) to analyze
the exercise modes can significantly reduce the impact of
noise. The filter produces a binary time series, with 1 for
a valid ‘exercise state’, and 0 for a ‘non-active state’. It is
clear that after filtering, the moment and duration of one
exercise event will be retained, while the short-bursts of
activities and irregular movements are removed. It is also
important to note that the intensity of exercise in terms of
step count is temporally left aside. Fig. 3 shows an instance
of noise reduction filter. The upper bar chart indicates the
original SDE time series and the middle bar chart is the SDE
time series after filtering out the noise steps. The bottom
curve represents the exercise state and we name it time
series of exercise. Comparing raw SDE time series with the
time series of exercise, we can find that the brief or light
movement is treated as non-active state. The time series of
exercise successfully remove the random and irregular part
of raw data.

Algorithm 1 Noise reduction filter
Input: input parameters step series ‘Step’, window width

‘W’, walk threshold ‘T’, length of Step ‘len’
initialization: walk state series ‘Walk’ = [0] * len(Step)
Output: Walk
1: for i = 0; i < len−W ; + + i do
2: if

∑i+W
k=i Step[k] > T then

3: Walk[k] :Walk[k +W ] = 1
return Walk

We tested the filter on a SDE dataset from a university
in China. The filter removed 12% of the points and reduced
the step noise by 28% after the operation for all data of all
users.

B. New distance of SDE time series

According to the analysis in section slowromancapiii@ ,
we can find that there are still errors if we use the Euclidean
Distance or DTW Distance to measure the similarity of
series processed in A. Both distance algorithms have their
own drawbacks. Euclidean Distance is too sensitive to the
moment-shift of exercise, and DTW Distance does not
consider the duration of exercise. We hope to extract the

Figure 3. Effect of the filter.

essential features of SDE time series. Therefore, we design
a new method of distance calculation.

The new distance algorithm should meet the following
requirements: 1. There must be a certain degree of tolerance
for the moment-shift of the exercise. 2. It is necessary to
consider the duration of the exercise. 3. The number of exer-
cise should also be included. Based on these considerations,
we propose to segment the time series of exercise, which
can have a more appropriate tolerance for the moment-shift
of the exercise, and also consider the number of exercise.
Further, we utilize the total duration of exercise over each
time segment which takes the duration of the exercise into
account. What is very innovative is that in order to achieve
a more appropriate segmentation, we calculate the user’s
historical data to obtain prior knowledge to divide the SDE
time series.

Based on the appropriate segmentation and duration ex-
traction, we obtain feature vectors that reflect the charac-
teristics of the user’s exercise. By calculating the Euclidean
Distance between the feature vectors, we can obtain the sim-
ilarity between the original SDE series. Detailed operations
are as follows:
• Acquisition of prior knowledge

With abundant historical data, we can extract the prior
knowledge from them and the prior knowledge can
be used to enhance the accuracy and interpretability
of classification. By superimposing the time series
obtained from A for a given user, we can get a long-
term distribution of the user’s exercise throughout a
day, as shown in Fig. 4. The x-axis of Fig. 4 is time
of the day whose unit is five minutes, with the y-axis
being the probability. This figure depicts the probability
that a user has exercise throughout a day. We can
see the moment when the user has a regular exercise.



Fig. 4 reflects that the probability of exercise at different
moments is quite different. But in the macroscopic
view, the probability distribution shows obvious ex-
ercise preference, which is intuitively consistent with
the regularity of human life. The exercise probability
distribution from different users can be very different,
because each user has unique exercise preference and
habits, making SDE data highly personalized.

Figure 4. Example: 24-hour exercise probability distribution for a user.

This probability distribution provides a rough sketch
of user’s exercise preference. With the sketch, we can
see the regularity and randomness in user’s exercise
habits, during a particular window of interest. And
we can find that a slight change in the user’s ex-
ercise habits or sudden occurrence of certain special
circumstances, such as equipment problems, can lead to
burrs and low-level peaks in the probability distribution
of exercise, which are not long-term habits of users.
We hope to obtain a stable exercise preference of the
user and filter out the burr parts caused by a few
special cases. Therefore, this paper uses the classical
Hodrick and Prescott filter in economics to smooth the
exercise probability distribution. This filter separates
long-term trends and short-term fluctuations, helping
us to extract the probability distribution of long-term,
stable exercise preference. The filter decomposes a
given time series object Y = (y1, . . . , ym) into a
summation Yt = Tt + Ct such that the objective
function is minimized over (T1, T2, . . . , Tm) , where
Tt represents the trend component (the desired output),
and Ct represents the cyclical component. Increasing
the smoothing parameter (λ) results in smoother trend
components at a cost of more information loss.

Yt =

m∑
t=1

C2
t + λ

m−1∑
t=2

((Tt+1 − Tt)− (Tt − Tt−1))2

(2)
The H-P filter is used to smooth the probability distri-
bution to obtain a stable trend part of the probability
distribution, as shown in Fig. 5.

Time

Probability
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Figure 5. Exercise probability distribution after filtering.

In the figure, the x-axis is time of a day, and the
y-axis is the probability of exercise occurring. The
yellow curve is the probability distribution after H-
P filtering. The filter helps us filter out unnecessary
noise information and get a longer-term, more stable
probability distribution.
Since the distribution is obtained from data over a
relatively long period of time, it can be very stable,
so it provides us with important prior knowledge to
handle user’s step data further.

• Segmentation of SDE time series
From Fig. 5 we can see that the user’s athletic activity is
very different at different time of the day. For example,
in the middle of the night, there is no exercise; but
there is a greater possibility of exercise at noon or off
work. Therefore, we hope to divide the time of day
into several time periods for segmentation research. At
the begining,we divided the time of day into three parts,
the moring, the noon and the night. However, we found
that some users’ continuous exercise is cut off when all
user’ exercise time series are divided by a uniform way.
For example, the day is divided into three segment of
eight hours (0 to 8 o’clock, 8 o’clock to 16 o’clock, 16
to 24 o’clock), but the user is used to exercising from
7 o’clock to 9 o’clock, and the series is cut off from
8 o’clock , resulted in the separation of consecutive
exercise.
Based on the observation of a large number of samples,
we find that the unified time segmentation method
is less effective for SDE time series. Therefore, we
propose a personalized segmentation method for SDE
time series. With the probability distribution in Fig. 5,
we can easily see that the user exercise regularly in the
mornings, at noons and during the evenings. It is thus
natural to conclude that if we separate the time of a
day into 3 sections, the user’s exercise activities, which
might happen 0 to 3 times for a particular day, will
fall into the respective sections. Provided that different



users may have totally different distributions, it is
important that we perform personalized time separation
and divide the time at which the peak of probability
occurs and part of its neighborhood into a segment,
such that user’s exercise activity is less likely be
truncated. Based on prior knowledge, we will know the
most appropriate location of the division and store the
information in moment vector p. We divide all the series
according to the value in the moment vector p, which is
personalized. For example, there are three main peaks
in the Fig. 5 and the moment vector p generated based
on prior knowledge is: [123, 170] ([10 : 15, 14 : 10]) ,
so we should divide all series of this user at 10:15 and
14:10 in time axis.
Comparing the method of personalized segmentation
with the method of taking eight hours as a segment, the
probability that the former cuts off countinuous exercise
decreased by 84.3% , which is a very significant
optimization.

• Calculation of new distance
The operation of personally dividing time series takes
into account the two characteristics of the number of
exercise and the time when they occured. Then we also
included the duration of the exericises into the distance
calculation. We extract the duration of exercise in each
segement to form a feature vector, which captures the
main features of exercise directly or indirectly, and is
the core of our distance calculation.
The Euclidean Distance is adopted to calculate the
distance between the feature vectors to characterize
the similarity between original SDE time series. This
method is concise and efficient. It captures the essential
features of SDE and reduces the noise interference.

C. Classification of exercise modes

The users’ exercise modes do not have an accurate
number, and there is no absolute ’right’ mode and ’wrong’
mode. Different users may have distinctly different exercise
preference. The method of specifying the number of clas-
sifications in advance, based on statistical information, may
result in poor interpretability of the classification, which is
not conducive to the semantic understanding of the analysis
results. Therefore, this paper proposes a framework for
constructing individual exercise modes recognition methods
based on prior knowledge, instead of specifying the optimal
number of modes in advance.

We obtained the prior knowledge from the user’s proba-
bility distribution of exercise analyzed in Subsection B. To
refine the more concise modes, we quantify the duration of
exercise. The distribution of the total duration of exercise in
every time segment is calculated, and then the elbow rule is
used to find the optimal number as the level of quantization.
In this paper, the exercise time in each segment is quantized
into three levels, and every quantified level values of each

segement is stored in the level matrix L. For example, based
on the vector p, the matrix L of the user in Fig. 5 should
be:  6 10 10

12 20 20
18 30 30


Each column of a matrix represent each segment, and the
lists of matrices represent the values of each quantization
level. The actual duration is equal to the value multiplied by
five, because each point are five minutes of data. Traverse
Cartesian product of all columns in matrix L to construct
initial exercise behavior classifiers. Calculate the distance
between feature vectors and the centroids of each classifier,
where Euclidean Distance is used. The feature vector will
be classified into a exercise mode classifier corresponding
to the smallest distance.

In each classifier, sort the distances between each feature
vector and the centroid. Remove the feature vector with the
largest distance from the classifier in turn, and calculate the
distance sum of all vectors left to the centroid after each
vector is removed. Based on this operation, we may obtain
a curve between the total distance within the classifier and
the vector removed. According to the elbow rule, the curve’s
inflection point is found. The distance at the inflection point
of the curve is set as a threshold value, and vectors whose
distance are greater than the threshold value are moved
to the abnormal classifier to obtain the final classification
result. Different from the unified setting of the abnormal
threshold in the general classification algorithm, our al-
gorithm personally calculates the corresponding abnormal
threshold for each classifier, which can improve the accuracy
of identifying the abnormal mode.

The classification method in this paper fully considers the
characteristics of SDE time series. It is concise and efficient,
can accurately identify different modes of exercise behavior,
and the analysis results are highly interpretable. In addition,
the method has better scalability, and the clustering precision
can be conveniently adjusted, with good usability.

V. EXPERIMENTS

A. Datasets

• Synthesized Dataset. The dataset is a manually gener-
ated virtual dataset. We selected seven typical SDE time
series of one user as the core series of the seven basic
exercise modes. A certain degree of random fluctuations
are generated from the three aspects of duration of
exercise, the steps at each time point and the moment
at which the exercise occurs, generating some virtual
time series in the same exercise mode and tagging
them. For step series data Step = (S1, S2, . . . , Sm),
we define methods for generating the same type of data
Step′ = (S′1, S

′
2, . . . , S

′
m) as follows:



Figure 6. Samples from the Synthesized Dataset.

Moment-shift:

S′i =M (Si) = Si+t( mod m), i = 1, 2, . . .m

Duration-shift:

S′i = D (Si) = βSi, i = 1, 2, . . .m, where 0.9 < β < 1.1

Steps-shift:

S′i = N (Si) = max {Si + s, 0}

,where

s ∼ N
(
0, σ2

)
, σ = 0.1 ∗max {Si}

Fig. 6 presents a superposition of partial time series.The
x-axis of Fig. 6 is twenty-four hours a day, and the y-
axis is the number of steps.

• JDJK-walk Dataset. This dataset comes from a univer-
sity in China and there are a total of 418 users’ time
series of steps in the dataset. The earliest occurrence
date of the SDE time series in the dataset is August 9,
2017. The longest consecutive days of data is 510 days.
The dataset has a total of 26,632 pieces of data. Each
piece of data contains the anonymized id, the date, the
steps recorded every five minutes and the total steps
of a day. Steps are recorded every five minutes, so the
dataset remains a high level of accuracy. Based on it, we
can analyze each user’s exercise preference and exercise
modes.

B. Evaluation

Overall comparison: We compare our method with
some well-known baseline algorithms (namely, K-means,
k-modoids, and agglomerative hierarchical clustering) and
the method in Decomposing Activities of Daily Living to
Discover Routine Clusters[14](DADL). We employed both
Euclidean Distance and DTW Distance for these methods.
• Synthesized Dataset Result. On the tagged dataset,

we apply the Euclidean Distance and the DTW Dis-
tance respectively to a variety of baseline algorithms

Table I
THE ACCURACY SCORES FOR THE SYNTHESIZED DATASET

Methods Distance Accuracy
K-means Euclidean Distance 48.0%

K-medoids Euclidean Distance 32.0%
DTW Distance 54.3%

Hierarchical Euclidean Distance 44.5%
DTW Distance 51.2%

DADL 62.3%
Our method 89.5%

to calculate the accuracy of the classification. From
TABLE I, we can see that the baseline algorithm
mostly performs poorly because it does not consider
the characteristics of the SDE time series themselves.
The result at Euclidean Distance is particularly poor
because the Euclidean Distance calculates the point-
to-point distance between two time series, and a large
distance is generated when there are hundreds of steps
of fluctuation, while the exercise mode has not changed
in fact. At the same time, the adoption of the Euclidean
Distance makes the algorithm very sensitive to the
moment-shift of the exercise on time axis. The exericse
of the same duration, offset by 30 minutes on the
time axis, will result in a very large distance. When
the DTW Distance is used for calculation, the time-
position information of the exercise and the duration of
the exercise are ignored to some extent. The difference
in the steps of each time point is amplified, and the
classification accuracy is low.
From the results, we can find that our method grasps
the essence of SDE time series, and thus, we can
better capture the user’s exercise modes, and obtain
satisfactory results.

• JDJK-walk Result. The SDE time series of a user is
classified by our method as an example. The centroids
of initial classifier are shown in Fig. 7. In Fig. 7, the x-
axis is 24 hours in a day, and the y-axis is the duration
of exercise. It can be seen that the time series is divided
into three segments according to the user’s exercise
preference.
TABLE slowromancapii@ is the initial classification

of the user’s SDE time series. From this table, we can
analyze the typical exercise modes of the user. The user
has more than one-third of the dates without continuous
exercise for more than 15 minutes (M9), which means
all movements are low-duration and sudden movements
in these days; the second and third mode are M0 and
M1, indicating that this user prefers low-to-medium-
intensity exercise, and he/she likes exercising more in
the evening. From the proportion of each mode and the
characteristics of each mode, we can conclude that this
is a user with a regular life who prefers a moderate
duration of exercise, and has a tendency to exercise in
the evening. Fig. 8 shows the proportion of different



Figure 7. The centroids of initial classifiers for a user in the JDJK-Walk
dataset.

Table II
NUMBER OF SERIES IN EACH CLASSIFIER

Mode M0 M1 M2 M3 M4
Number 147 113 12 8 1
Proportion 33% 25% 2.7% 1.8% 0.2%
Mode M5 M6 M7 M8 M9
Number 3 5 0 0 159
Proportion 0.7% 1.1% 0% 0% 35.5%

modes obtained by our algorithm in different time
lengths. The line for each color represents a exercise
mode of the user, with the x-axis being length of the
dataset(days) and y-axis being the proportion of the
mode. It can be seen that the state probability after 200
days tends to be stable, and the result converges to a
certain value, that is, the method can find a more stable
exercise mode of the user. At the same time, from this
figure we can find changes of the user’s exercise habits:
as time goes on, the user gradually reduces the night’s
exercise.

Figure 8. The proportion of each exercise mode over time.

We remove the time series in the abnormal classifier,
and superimpose the time series before and after the
removal operation. The time series can reflect the
duration and position of the user’s exercise, so their
superimposed graphics express the information of the

dataset. As shown in Fig. 9, the blue portion is the
superimposed pattern before the removal operation, and
the red dashed line is the superimposed pattern after the
removal operation. We can see that the shape of the
graphics after the superposition is basically unchanged
,which means the information loss of the dataset is very
small.

Figure 9. Information loss after abnormal series is removed.

Finally, we classify the data of all the users who
have more than 30 days data in the dataset. Rank
the proportion of all exercise modes and calculate
the number of modes that make up the first 80% .
This dataset comes from the teachers who have stable
working arrangements during the week. Regular work
and rest limit the number of exercise modes. From the
Fig. 10, we can see that most users have 0-4 permanent
exercise modes, and this result is in the line with the
habits of people.

Figure 10. Distribution of the number of exercise modes of the users.

VI. CONCLUSIONS

We propose a simple and personalized classification
method for SDE. It takes into account the time and duration,
both of which are the essential features of exercise. Based
on the two features, we propose new distance functions
during the classification, greatly reducing the computational



complexity and minimizing the effect of possible data in-
accuracy in SDE time series. Experiment results show that
the proposed method significantly outperforms existing SDE
classification methods. Furthermore, our method produces
results with great interpretability. It may provide health
professionals with a robust tool to understand and interact
with their clients.

The results obtained from this research is highly depen-
dent on the fine granular dataset itself. Our next step is to
use the insight obtained through this research to analyze data
with coarser granularity, for instance, data series collected
with wider, or even non-uniform intervals.
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